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Abstract: A large number of human retinal diseases are characterized by a 
progressive loss of cones, the photoreceptors critical for visual acuity and 
color perception. Adaptive Optics (AO) imaging presents a potential 
method to study these cells in vivo. However, AO imaging in 
ophthalmology is a relatively new phenomenon and quantitative analysis of 
these images remains difficult and tedious using manual methods. This 
paper illustrates a novel semi-automated quantitative technique enabling 
registration of AO images to macular landmarks, cone counting and its 
radius quantification at specified distances from the foveal center. The new 
cone counting approach employs the circle Hough transform (cHT) and is 
compared to automated counting methods, as well as arbitrated manual 
cone identification. We explore the impact of varying the circle detection 
parameter on the validity of cHT cone counting and discuss the potential 
role of using this algorithm in detecting both cones and rods separately. 
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1. Introduction 

Retinal diseases are a significant cause of progressive deterioration of visual function and 
collectively, they blind millions of people every year [1]. Accurate diagnosis and monitoring 
of retinal diseases is now heavily reliant on high-resolution retinal imaging, in addition to 
standard visual acuity testing, examination and other functional assessments including 
microperimetry and electroretinography. 

Significant advances have been made in the capability of retinal imaging over the past 
several decades through the introduction of digital retinal cameras and fluorescein 
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angiography for visualizing retinal vasculature. The development of scanning laser 
ophthalmoscopes and optical coherence tomography systems that can capture en face, three-
dimensional images have led to enhanced contrast in image details and the ability to analyze 
cross-sections of the retina, respectively [2–5]. Adaptive optics (AO) is the most recently 
adopted optical technology used to improve the performance of retinal photography by 
compensating for the effects of optical aberrations within the eye. Borrowed from 
astrophysics, AO technology enables the visualization of individual retinal photoreceptor 
cells, retinal blood vessel capillaries and bundles of ganglion cell axons within the living 
human retina [6–8]. 

Although recognized as a powerful research tool, AO retinal imaging is not yet in 
widespread clinical use. Central to the realization of the clinical potential of AO imaging is 
the development of robust, automated techniques to process and analyze the image outputs. 
Assessment of the cone density, spacing and packing arrangements at certain spatial locations 
within the central region of the retina (i.e. the macula) may be useful in determining whether 
the photoreceptor mosaic of a particular individual has changed over time, or whether it 
differs from normal. Our ability to draw these conclusions ultimately depends on the 
reliability and repeatability of the cone metrics that are used as clinical trials end points. 

Recently, several research groups have developed software that semi-automates 
montaging of AO cone images [9–13]. Automatic photoreceptor detection algorithms have 
also been proposed [9–19]. In 2007, Li et al. introduced a procedure of automated cone 
counting based on the detection of local maxima in the image. This is the most widely-used 
algorithm [10]. In the first step, the image is filtered using a Gaussian low-pass filter and then 
the local maxima are found using the inbuilt “maxima” function in Matlab. If multiple 
maxima are closer than the minimum cone separation their centroid is taken as the final 
location. In the same year, Xue et al. implemented the cone detection formula based on an 
image histogram analysis [11]. Here, the background is first subtracted from the original 
image, enhancing linear brightness. Then, the image is divided into intensity ranges. The 
algorithm searches the connected regions of pixels for intensity values within a specific range. 
The centroids of the connected regions are defined as the cone coordinates. This process is 
repeated for each intensity range, from highest to lowest. If two or more coordinates occur 
closer than the minimum cone separation, their centroid is taken as the final location. Turpin 
et al. had proposed the use of multi-scale modelling and normalized cross-correlation to 
identify retinal cones in AO images [17]. Briefly, using a Gaussian-based model they initially 
modelled the size and shape of retinal cones. Normalized cross-correlation is then performed 
generating an image where all the regions that are similar to the shape of the Gaussian are 
highlighted. Then by applying local maxima detection, the cones are counted. An alternative 
technique for segmenting and detecting cones was introduced by Chiu et al. [14]. The authors 
used a graph theory and dynamic programing (GTDP) to segment the AO images to detect 
cones. This method relies on a transform that maps closed-contour features in the Cartesian 
domain onto lines in the quasi-polar domain. Features of interest are then segmented as layers 
using GTDP. More recently, Cooper et al. proposed a fully automated algorithm for 
estimating photoreceptor density based on the radius of Yellott’s ring [20]. The authors 
inspected the image power spectrum and extracted features that corresponded to cell packing. 
Although this technique is accurate in measuring density of cones it is not possible to derive 
information on packing geometry of cones. 

The available methods vary in the repeatability of the results and the degree of 
automation. In some of these, manual correction of the counting process is still required and a 
large amount of time is invested in creating a montage to enable cone counting in regions of 
the retina that are remote from the fovea. Since these functionalities are not yet available in 
commercial devices, there remains a need for further improvement of cone detection 
procedures. 
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In this paper, we describe a method of processing AO image frames that enables: 1, co-
registration the small field AO frame with a wide field macular image so that we know the 
precise coordinate of any region of interest in the AO frame relative to the foveal center; 2, 
creation of a montage of the cone images and the corresponding density map. This provides 
an overview of cone distribution in the macular region and allows correlation between 
structure and function by overlaying these montages on macular images derived from other 
imaging modalities; and 3, development of a database of AO images for future comparison. 

In addition to the above functions, we demonstrate that our customized software is able to 
identify cones reliably using the circle Hough transform (cHT) algorithm [21–25] 
implemented in Matlab; the cHT searches for circular formations of a given radius in the 
image. We also evaluate the effectiveness of the algorithm in analyzing human AO retinal 
images based on known parameters related to the cone size, density and spacing across the 
macular region. The cone counting software was validated for different-sized cones, from 
small foveal cones with compact arrangement to large perifoveal cones that were sparsely 
distributed. A set of images from an adaptive optics scanning laser ophthalmoscope (AO-
SLO) was obtained from an outside source for analysis of cones at approximately 0.65° 
eccentricity from the center of the fovea (within the foveal region). At this location, the radius 
of the cones is approximately 1 µm and easily resolvable by the SLO system [26]. Images 
from the adaptive optics flood illumination ophthalmoscope (AO-FIO) at our center were 
used to optimize the parameters of the cHT at 3° to 9° eccentricities (perifoveal region), 
where the radius of cones increases from 2 to 3.5 µm [26]. Cones in this range of 
eccentricities are easily imaged by the FIO system because of the large field of view (4° x 4°) 
compared to the SLO system (1° x 1°). We report the impact of image quality enhancement 
on inter-observer agreement and how the circle detection parameters in cHT are chosen. 
Finally, we report the performance of our optimized cHT approach in AO-SLO and AO-FIO 
images and compare this with the performance of other automated methods against manual 
cone identification. 

2. Materials and methods 

2.1. Adaptive optics instrumentation 

In this study we used images from two sources to develop and test our customized cone 
counting software and to validate the cHT algorithm. Images taken from our AO-FIO (rtx1, 
Imagine Eyes, Orsay, France) were used to identify cones in the perifoveal region between 3° 
to 9° from the center of the fovea. We also applied the algorithm to the AO-SLO cone images 
from the Chiu and Garrioch study [14,15], since the AO-FIO is unable to resolve cones from 
the center of the fovea to about 2.5°. The images are publicly available at the website: 
http://www.duke.edu/~sf59/Chiu_ BOE_2013_data set.htm [14]. 

The rtx1 AO-FIO instrument is comprised of two parts. The first is a non-contact, en face 
reflectance retinal imaging device, employing a non-coherent flood illumination light source, 
with a central wavelength of 850 nm and a low-noise CCD camera. The second part is the AO 
control loop that measures and corrects the ocular aberrations. The apparatus directs a small 
beam of light generated by a superluminescent diode with a central wavelength of 750 nm 
into the eye, which then backscatters off the retina. The scattered light leaving the eye 
succumbs to spherical aberration of the eye’s optics before being recorded by the imaging 
components of the Shack-Hartmann wavefront sensor. In addition, a corrective element (the 
deformable mirror) and a control system are used to correct the eye's wave aberrations and 
control the interaction between the wavefront sensor and the corrector element respectively; it 
interprets the wavefront sensor data and computes the appropriate wavefront corrector drive 
signals in real time. 

During a single measurement, 40 images are acquired over 4 seconds. This number of 
frames results in increased signal-to-noise ratio and therefore improved visibility of cones. 
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This is achieved through co-registration of frames using a cross-correlation method 
(registration of X/Y and rotation) and finally computing the average of the images. The raw 
images that show artefacts due to eye blinking and saccades are automatically eliminated 
before averaging. The final image corresponds to a 4° × 4° (750 pixels × 750 pixels 
oversampled to 1,500 pixels × 1,500 pixels) region in the retina. In linear dimensions, this is 
approximately 1.2 mm × 1.2 mm. The resolution of the system is 250 line pairs per 
millimeter. This limits the ability to distinguish cones in close proximity to the fovea. 
Essentially, images obtained at retinal eccentricities within 2.5° from the foveal center are not 
reliable for performing cone metrics in this system [27]. 

The methods for image acquisition and pre-processing of AO-SLO images are described 
in detail in [15]. Briefly, the authors used their system to image the central foveal cone 
mosaic of the right eye. The wavelength of the superluminescent diode used for retinal 
imaging was 775 nm. Separate image sequences of 150 frames each were collected at four 
retinal locations (bottom left, bottom right, top left, and top right), each at approximately 
0.65° from the center of fixation. The intra-frame distortions are corrected within the frames 
and the forty frames with the highest normalized cross correlation to the reference are 
averaged. The final image corresponded to a 0.96° × 0.96° (~650 pixels x 650 pixels) region 
in the retina. In linear dimensions, this is approximately 260 µm × 260 µm. 

2.2. Study subjects 

AO-FIO images used for algorithm validation were obtained from 7 healthy adult subjects (3 
females and 4 males) aged 23-35 years old. These subjects underwent a single imaging 
session in which 12 AO image frames were acquired from both eyes of neighboring regions, 
with a 2° x 2° region of overlap between each image. These images covered the area from 7° 
nasal to 7° temporal (−3° + 3° vertical) to the fovea. AO imaging on each healthy volunteer 
took approximately 30 minutes. Each patient also underwent complete eye examination 
including non-contact biometry (IOL Master, Carl Zeiss Meditect Inc, Germany) and retinal 
imaging using a near-infrared scanning laser ophthalmoscope/ spectral-domain optical 
coherence tomography (Spectralis, Heidelberg Engineering GmbH, Germany). All research 
procedures described in this work followed the tenets of the Declaration of Helsinki. The 
ethical protocol was approved by The University of Western Australia Human Research 
Ethics Committee (RA/4/1/7662) and all participants of the study provided written consent. 

2.3. Semi-automated AO image analysis and workflow 

A pre-requisite for analysis of cone density distribution in AO image frames derived from the 
rtx1 camera, is the ability to assign a coordinate relative to the foveal center in all AO image 
frames acquired. This requires a combination of frame registration and mapping in addition to 
cone signal enhancement for accurate cone detection. Our cone counter suite of programs for 
semi-automatic analysis and visualization of cones on AO imaging is composed of several 
sub-programs and has been implemented in Matlab 2014 and executed in the Matlab Image 
Processing and Computer Vision Toolboxes (Mathworks; Nattick, MA, USA). A graphic user 
interface (GUI) is designed to allow users to interact with the software and to assist data 
analysis. The core steps are outlined in Fig. 1 and are explained in detail in paragraphs: 2.3.1– 
2.3.4. 

 

Fig. 1. Schematic for image processing procedures applied to Adaptive Optics images. 
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2.3.1. Conversion from angular to metric coordinates 

In the first step, we use a program provided by the producer of the AO-FIO device to correct 
for distortion within frames of the raw AO image sequence and to average frames to enhance 
the signal-to-noise ratio of the final image. Then, we employ Littmann’s formula (Eq. (1)) 
and the Gullstrand schematic model of the eye to convert each final image from angular 
coordinates (degrees of visual angle) to metric coordinates (in millimeters) on the retina. 

 ,t p q s= ⋅ ⋅  (1) 

where, t is the corrected retinal dimension expressed in micrometers, p – the magnification 
factor of the imaging system (p = 1), q – the magnification factor for the individual eye, s – 
value expressed in degrees and obtained from the adaptive optics imaging system. The ocular 
magnification q of the eye can be determined by the formula: 

 ( )0.001306 -1.82 .q eye axial length= ⋅    (2) 

The eye axial length value is taken from non-contact biometry measurement. 

2.3.2. Image pre-processing 

Poor image quality has been proposed as a major contributor in the high test-retest variability 
of cone density measurement in AO images [15,29,30]. Therefore, we incorporated an image 
pre-processing function into the workflow of AO automated image analysis. Optimizing cone 
visibility is also critical to reduce inter-observer variation in the cone count since manual 
identification of cones is used as the gold standard in our analyses of the validity of various 
automated cone segmentation algorithms. The procedures applied here are: 1, contrast-limited 
adaptive histogram equalization using a full range and Rayleigh distribution to map the 
grayscale pixel values of the cones into the full range of the grayscale histogram (0-255); and 
2, unsharp masking to enhance edge features resulting in a sharpened AO image. 

In addition to the above image processing procedures, we used a band-pass filter available 
in ImageJ software to enhance cone reflexes. This filter processes an image in the frequency 
domain and attenuates very low and very high frequencies. It enhances the edges (suppressing 
low frequencies) whilst reducing the noise (attenuating high frequencies). Through manual 
adjustment of the filter setting, we subjectively chose the one that produced the most apparent 
improvement in the quality of these images. We filtered large structures down to 10 pixels 
and small structures up to 5 pixels. A logarithmic operation was subsequently applied to the 
images to enhance details contained in the low pixel grey values. 

From the 106 cropped AO images that were used for developing our own cone counting 
software (see below), a subset of 20 were used for determining the optimal image processing 
parameters. These images were 50 µm × 50 µm in size chosen from different locations in the 
retina with a range of image qualities. The amount of unsharp mask defines the strength of the 
sharpening effect and is expressed as a scalar value ranging from 0 to 1. A higher value leads 
to an increase in the contrast of sharpened pixels. The unsharp threshold is also expressed as a 
scalar value ranging from 0 to 1 and it describes the minimum contrast required for a pixel to 
be considered as an edge pixel. Higher values (closer to 1) allow sharpening only in high-
contrast regions whilst leaving low-contrast regions unaffected. Lower values will also allow 
sharpening in relatively smoother regions of the image. We found that the most suitable 
values for unsharp amount and unsharp threshold were 0.99 and 0.10 respectively. This set of 
parameters was then applied to the entire data set of 106 cropped AO images derived from the 
rtx1 camera. 
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2.3.3. Image registration and montage 

Loss of perspective of the AO image frame in relation to the foveal center is a potential 
source of measurement error in cone density because of significant topographic variation in 
this parameter. Accurate localization of the area of interest (from 3° to 9° eccentricity) for 
cone counting is facilitated through image registration of AO frames (4° × 4°) with a wide 
field photograph of the macular region (30° × 30°). We manually perform control point 
registration between the macular photograph and the AO images using blood vessel 
landmarks within the macula (Figs. 2(a) and 2(b)). 

 

Fig. 2. Image processing procedures applied to AO data acquired in the human retina. (a) 
Manual control point registration between the macular photograph and AO frames; (b) 
Mapping of AO frames onto the macular photograph; (c) Post-processing and image analysis 
required to compute information about cone number, density and its radius in the region of 
interest. 

After loading the macular photograph (30° × 30°) and individual AO frames (4° × 4°) the 
user first marks the foveal center on the macular image. At least three corresponding 
landmarks are then marked on the macular photograph and AO frame for image co-
registration. The procedure is repeated for each AO frame taken and it takes approximately 30 
minutes to complete for the 12 AO frames. These are saved as a set of configuration files (one 
per AO frame) that link the macular photograph and AO frames, recording their location and 
the affine 2D transformation that maps the AO frames onto the macular photograph. 

On completion of AO frame overlay onto the macular photograph, these individual frames 
are stitched together. The program stores all the AO frames and affine transformation 
matrices in order to determine the number of images that overlap at any one sampling point in 
the stitched image. When a region of interest is chosen for cone density measurement, the AO 
frame that provides the highest cone density from the corresponding region is used for 
calculation of the density. 

2.3.4. Image analysis: the circle Hough transform 

Identification of cones and measurement of density, is performed using the two-step Hough 
transform available in the Matlab function ‘imfindcircles’ [21]. 

The Hough transform (HT) was initially designed for analysis of curves in 1962. This 
method is able to detect any shape that can undergo geometric transformation in an image 
[22]. Detection of lines, circles and other structures is possible if their parametric equation is 
known. A circle with radius ri and center (ai,bi) can be described with parametric equations as: 
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where the angle θ  sweeps through a full 360° range, the points (xi,yi) trace the perimeter of a 
circle. If an image contains many points, some of which fall on perimeters of circles, then the 
algorithm searches for parameter triplets (ai,bi,ri) to describe each circle. Since the parameter 
space is 3D, it makes direct implementation of the Hough technique more expensive in 
computer memory and time. To reduce time and memory requirements, the circle detection 
with the HT can be separated into two stages [22]. The first stage involves a two-parameter 
HT to find the center of the circles (ai,bi). An edge detection process is carried out to identify 
significant edge points. Then, a cubic polynomial curve-fitting method is employed to 
estimate the surface normal and the concavity of the fitted curve at each boundary point. 
Based on the normal direction and concavity information, the line segment upon which the 
circle center may lie is determined. The votes are collected in a parameter plane based on the 
coordinates of each point on the resulting line segment. At the end of it, those array elements 
containing large numbers of votes indicate the presence of circle centers [28]. After detecting 
possible centers, the histogram of the distances of all feature points from the centers is used to 
verify the existence of circles and extract their radii. The user sets the radius detection range 
to detect circle formations of a particular set of radii in the image. A sharp maximum appears 
in the graph, presenting the number of votes within the specified radius detection range, 
indicating the presence of discrete circle centers. 

We propose two methods to analyze cone images. First, the cones can be counted 
globally. The configuration files that link the macular photograph with the AO frames are 
used to create a montage of the AO frames. This montage is used for automated detection of 
cones. A small sampling window specified by the operator is then shifted at steps equal to the 
window size to cover the entire montage. Circular structures are identified within each 
window and a density map that matches the montage is generated (Fig. 3). The average total 
time for creating the montage and density map covering a 14° × 6° region (requires 6 × 2 
overlapping AO frames) centered on the fovea is approximately 4 minutes on a laptop 
computer with a 64-bit operating system, Intel Core i7-3667U, 8GB RAM. 

In the second method, the user may select an interactive user interface to analyze 
individual areas in the AO frames. It loads an individual AO frame so that the user can 
sample areas of interest that are then saved as individual images for output and further 
analysis. This cone counting procedure takes less than 1 second. A summary of the cones 
counted in each sampled area is then saved in Microsoft Excel. In both methods the user can 
also define a sensitivity factor (between 0 and 1); increasing the factor results in more circular 
objects being detected, including dim and partially obscured circles. 

 

Fig. 3. Retinal cones image montage and corresponding density map visualization. 

2.4. Image selection for manual and automated cone counting 

Images from both AO-FIO and AO-SLO systems were chosen for analysis because these 
devices are complementary in their resolution (AO-SLO has a higher resolution than AO-
FIO) and field of view (AO-FIO has a wider field of view than AO-SLO). 
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We analyzed the image set delivered by the AO-FIO system using 50 µm × 50 µm 
sampling windows. This window size was chosen based on the common approach currently 
used to derive density estimates and reported previously by other groups [29]. 106 cropped 
images (65 pixels × 65 pixels, approximately equivalent to a 50 µm × 50 µm region or 0.0025 
mm2) selected from 24 AO frames of 7 subjects were used for validation of our software. The 
images have been grouped into two categories according to their location on the retina from 
the center of fovea: 3° to 5° eccentricity (52 images) and 7° to 9° eccentricity (54 images). 
According to Curcio et al. [26] the cone radii at these locations are approximately 2 µm (~2-3 
pixels in AO-FIO images) and 3.5 µm (~4-5 pixels in AO-FIO images) respectively. Cropped 
images from the regions of interest were chosen randomly from our image database. Each AO 
frame (1,500 pixels × 1,500 pixels) was sorted based on the relative position within the 
macular regions. Information regarding eccentricity is included in each AO frame. Results of 
cone counting from manual cone identification (our gold standard), AOdetect (onboard 
software of the rtx1, already used by other research groups for cone identification) and our 
cHT algorithm (presented in this paper) were compared. 

We also randomly selected 60 images obtained from the AO-SLO system for analysis. 
The data set of high quality images and the corresponding Garrioch et al. and Chiu et al. 
segmentation results are publicly available at the: http://www.duke.edu/~sf59/Chiu_BOE_ 
2013_data set.htm [14]. These images were taken at approximately 0.65° from the center of 
fixation (the cone radius at the fovea is approximately 1µm according to Curcio et al. [26], 
corresponding to 2-3 pixels in their AO-SLO images). The images were cropped to 55 µm × 
55 µm in the image center, which is approximately 137 pixels × 137 pixels (the resolution of 
this system is higher than the AO-FIO instrument, therefore µm/pixel value is different from 
AO-FIO system). This window size was selected to compare the results of cHT cone 
detection with the results reported in the Garrioch and Chiu studies. The same image set was 
cropped later to 50 µm × 50 µm to analyze a similar metric-sized image as the rtx1 images 
and to optimize the cHT algorithm. Results of cone counting from manual cone identification 
(our gold standard), Garrioch’s semi-automated method (Garrioch’s gold standard), Chiu’s 
GTDP method and our cHT algorithm (presented in this paper) were compared. 

2.4.1. Manual cone identification and inter-observer variation 

Manual counting was performed by three independent observers using software implemented 
in Labview and developed by our group. The observers had varying levels of familiarity with 
AO images, ranging from a complete novice to an expert counter. The same instructions were 
delivered to each observer along with the images to be analyzed. The observers were required 
to mark circular bright signals in the AO image. This was done on unfiltered images initially 
and then repeated in filtered images 1 month later to minimize learning effect in cone 
visualization. If the bright signal was truncated by the edge of the image frame, the observer 
was instructed to only mark those with more than 50% of its area visible in the image frame. 
This program allowed rapid storage and retrieval of a collection of landmarks. The user 
identified cones in an AO image simply by clicking on the image so that a colored dot was 
overlaid at the clicked position. The maps of colored dots from each user were collated and 
simultaneously overlaid on the analyzed image and saved to an Excel spreadsheet and .png 
file respectively. The manual counts were arbitrated by an independent observer. The cones 
marked by at least two observers were included without validation and the cones marked by 
only one of the three observers were either dismissed or confirmed by an arbitrator. 

2.4.2. Cone counting of AO-FIO images using the AOdetect software 

Cone photoreceptors within the AO-FIO images are identified in the AOdetect software by 
automatically detecting the central coordinates of small circular spots whose brightness are 
higher than the surrounding background level. The spatial distribution of these point 
coordinates are analyzed in terms of cone density and inter-cone spacing, as well as Voronoi 
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analysis using the Delauney triangulation method. Results are provided in the form of 
comprehensive statistics and graphics, all of which can be exported to easily interpretable file 
formats. When the cones are detected and the Voronoi diagram is prepared, the Voronoi 
polygons are considered to be the cells’ surfaces. From this diagram, it becomes relatively 
simple to estimate the density for each cell (1/surface of the cell). Based on this information 
the min, max, mean and standard deviation of cone density can be calculated. The processing 
time for each 4° × 4° AO-FIO frame is approximately 1 minute. 

2.4.3. Cone counting of AO-SLO images reported by Garrioch et al. and Chiu et al 

Cones in the AO-SLO images were identified by a semi-automated method described by 
Garrioch et al [15] and also the graph theory and dynamic programing (GTDP) method 
reported by Chiu et al. [14]. In the semi-automated method, local maxima are identified as 
cones and missed cones are counted manually and added to the automated count to derive the 
total cone count. Chiu et al. use a graph theory and dynamic programing (GTDP) method to 
segment the AO images and detect cones. Briefly, local maxima are also detected in the pre-
processed image frame. The quasi-polar transform is then used to map the closed contour 
cone estimates from the Cartesian domain into layers in the quasi-polar domain. These 
structures are then segmented using GTDP method. 

2.4.4. Cone counting using the circle Hough transform 

The circle Hough transform (cHT) counting technique was applied to both AO-SLO and AO-
FIO. We empirically chose a sensitivity factor (between 0 and 1) of 0.99 for the cHT 
algorithm. The higher the factor, the greater the number of circle-like objects that are 
detected, including those which are dim or partially obscured by the image frame boundary. 
The range of radii of the circular objects to be identified in the AO image is optimized by 
varying two parameters: the minimum radius and its range. We systematically tested 22 
combinations of radius parameters. The smallest circle radius we aimed to detect was 1 pixel 
and the largest was 10 pixels. The size of the radius range was varied between 3 and 9 pixels. 
We hypothesized that cones of different sizes (pixel dimensions) may require different radius 
settings in cHT for optimal cone detection as compared to manual count. 

2.5. Statistical analysis 

Agreement between two measurement methods were evaluated by using Bland-Altman plots 
and limits of agreement. These were implemented in Matlab [31–33]. In the first step a scatter 
of differences in cone counts between the methods against the average counts is plotted to 
confirm that there is no relationship between the differences and the mean. If this condition is 
preserved then the bias (mean difference), standard deviation of the differences (SD of diff.) 
and confidence limits for the bias (called the limits of agreement, LoA, and defined as: mean 
difference ± 1.96 SD of diff.) are calculated. The bias and LoA are then displayed as solid and 
dashed lines respectively on the graphs (see Section 3). The plotted differences represent the 
new method minus the established method, such that the bias quantifies how much higher 
(positive bias) or lower (negative bias) average values are with the new method compared 
with the established one [32]. The standard deviation of the differences measures the random 
fluctuation around the mean. The LoA represents the range of values for the differences 
between the methods that can be expected 95% of the time. It gives an indication of how well 
the measurements agree between methods. Paired t-tests were used to examine the 
significance of the bias. The two way repeated measure analysis of variance (ANOVA) test 
was used to determine whether there was a significant difference in cone count before and 
after filtering and between the 3 observers. Spearman, Pearson and Kendall correlation 
coefficients were calculated to determine the relationship between inter-observer variation 
and magnitude of the cone count. Coefficient of repeatability was calculated as described by 
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Bland and Altman [32] and the relationship between inter-observer differences and mean 
cone count was examined through Spearman and Pearson correlation. 

3. Results 

The effect of image processing on inter-observer variability in manual cone counting is 
reported in Section 3.1. Comparisons of the performance of cHT against arbitrated manual 
cone identification in AO-SLO and AO-FIO images are detailed in section 3.2. Assessment of 
cone detection within AO-SLO and AO-FIO images by the circle Hough transform and how 
they compare to the existing automated methods are reported in Sections 3.3 and 3.4. 

3.1. Manual cone identification–effect of image processing on inter-observer variability 

Figure 4(a) (top row) illustrates AO-FIO images selected from our database before filtering. 
Background noise was reduced and dim structures that resemble cones became more obvious 
after filtering (Fig. 4(a) bottom row). We also applied the same image processing procedures 
to AO-SLO images to check that our image filter did not diminish features of readily 
identifiable cones whilst reducing noise (Fig. 4(b)). 

 

Fig. 4. (a) Adaptive optics images obtained using AO-FIO in 2 different locations of the retina; 
before (top row) and after (bottom row) filtering operation. The red arrows indicate features 
that are difficult to interpret. The green arrows present how the visibility of these structures is 
enhanced by the image filter. (b) Images from AO-SLO system. The orange arrows indicate 
features that are lower contrast. The blue arrows present how the visibility of these structures is 
enhanced by applying a logarithmic operation. 

Two-way repeated measures ANOVA test on cone counts of the 3°-5° images 
demonstrated a statistically significant main effect of the observer, F(2,51) = 59.85, p < 
0.001, η2 = 0.540 but not of image filtering. The interaction between observer and filtering 
was also statistically significant, F(1,51) = 22.88, p < 0.001, η2 = 0.310. For cone counts of 
7°-9° images, the main effect of observer was statistically significant, F(2,53) = 204.11, p < 
0.001, η2 = 0.790 as was the effect of image filtering, F(2,53) = 10.37, p = 0.002, η2 = 0.164. 
The interaction between observer and filtering was also significant, F(1,53) = 91.65, p < 
0.001, η2 = 0.634. High inter-observer variation in cone counts was encountered in unfiltered 
images (Fig. 5). Coefficients of repeatability (95% confidence interval) between the 3 
observers were 25.10 (21.68-28.51) and 39.62 (34.34-44.91) for cropped images at 3°-5° and 
7°-9° from the fovea respectively. This reduced to 10.82 (9.35-12.29) and 14.10 (12.22-
15.98) respectively when filtered images were counted by the same observers. 

Filtering reduced the mean inter-observer variance of cone counts by 81% and 87% for 
the 3°-5° and 7°-9° images respectively. There was a weak relationship between standard 
deviation and mean cone counts except for unfiltered images at 3°-5° where a strong negative 
association existed: the inter-observer variation reduced as cone density increased (Fig. 5). 
Figure 6 illustrates the change in inter-observer agreement between two independent 
observers. 
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Fig. 5. Relationship between standard deviations (SD) and means of manual cone counts, 
within AO-FIO images, by three independent image graders; before (first column) and after 
filtering (second column). SD of manual cone counts differences, before (x-axis) and after (y-
axis) image filtering showing much lower standard deviations using filtered images (third 
column). r: Pearson, tau: Kendal and rho: Spearman correlation coefficients; *1p < 0.5, *2 p < 
0.1, *3p < 0.05, *4 p < 0.01, *5p < 0.001. 

 

Fig. 6. Bland-Altman (second column) and scatter plots (third and fourth columns) showing 
agreement between 2 independent observers in the manual counting of unfiltered (a) vs filtered 
(b) images obtained using AO-FIO system; Black and red circles on Bland Altman plots 
correspond to 3-5 and 7-9 degree ranges, respectively. 

The above results support the importance of image filtering in enhancing consistency of 
cone identification. This is a pre-requisite for further analysis and comparison between 
automated and manual counting methods. However, it is important to note that cone 
segmentation using AOdetect can only be done with original unfiltered images. 

3.2. Cone identification–optimization of the circle Hough transform parameters 

We systematically tested the performance of cHT against arbitrated manual cone counts on 
the entire set of 106 AO-FIO and 60 AO-SLO filtered images (50 µm × 50 µm) using 
different radius ranges and minimum radii for the circular objects that we wish cHT to detect. 
The counts for different ranges are presented in Table 1. These radius ranges have been 
selected on the basis that the cone radius at 0.65° is approximately 2-3 pixels in the AO-SLO 
image, while the cone radii at 3°-5° and 7°-9° are approximately 2-3 and 4-5 pixels 
respectively. 
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Table 1. Bland-Altman analysis and paired t-test showing the agreement between cone 
counts obtained manually and automatically using the circle Hough transform method. 

M diff. – mean difference, LOA – limit of agreement, Tstat - t-statistic. The optimum 
ranges are highlighted in green. Second most optimal ranges are highlighted in grey. 

Radius 
range 

 Degree  
Radius 
range 

 Degree 

 
AO-
SLO 

AO - FIO   
AO-
SLO 

AO - FIO 

 0.65 3-5  7-9  

 

 0.65 3-5  7-9  
3 pixels 
range 

 
(1 to 3) 

M diff. 1 5 10 3 pixels 
range 

 
(2 to 4) 

M diff. 8 1 4 
 95% LOA (-7, 4) (-5, 15) -2 to 19 95% LOA (2, 14) (-9, 9) -3 to 11 

Tstat 3 6.5 17.6 Tstat 18 -0.8 7.2 
p-value < 0.01 < 0.01 < 0.01 p-value < 0.01 0.4 < 0.01 

   
3 pixels 
range 

 
(3 to 5) 

M diff. -13 -3 -3 

 

3 pixels 
range 

 
(4 to 6) 

M diff. -21 -6 -3 
95% LOA (-19, -8) (- 11,  4) (-7, 5)  95% LOA (-35, -9) (-16, 3) (-10, 4) 

Tstat 33 -6.3 -4.6 Tstat 24 -9 -5.9 
p-value < 0.01 < 0.01  < 0.01 p-value < 0.01  0.01  < 0.01 

   
3 pixels 
range 

 
(5 to 7) 

M diff. -32 -5 -3  4 pixels 
range 

 
(1 to 4) 

M diff. 0 3 8 
95% LOA (-52, -13) (-17, 7) (-11, 5) 95% LOA (-4, 3) (-6, 13) (1, 15) 

Tstat 24 -6.2 -5.7 Tstat 1.7 5 16.5 
p-value < 0.01 < 0.01  < 0.01 p-value 0.09 < 0.01 < 0.01 

   
4 pixels 
range 

 
(2 to 5) 

M diff. -7 -1 3  4 pixels 
range 

 
(3 to 6) 

M diff. -14 -4 -1 
95% LOA  (-12, -1) (-9, 6) (-4, 9) 95% LOA (-22, 6) (-12, 4) (-7, 4) 
Tstat 17 -2.2 5.9 Tstat 25 -6.8 -3.4 
p-value < 0.01 < 0.01 < 0.01 p-value < 0.01 < 0.01 < 0.01 

           
4 pixels 
range 

 
(4 to 7) 

M diff. -24 -5 -2  5 pixels 
range 

 
(1 to 5) 

M diff. 0 3 6 
95% LOA  (-39, -9) (-16, 5) (-10, 5) 95% LOA (-4, 3) (-5, 11) (0, 13) 
Tstat 22 -7 -4.5 Tstat 3 4.9 13.6 
p-value < 0.01 < 0.01 < 0.01 p-value 0.01 < 0.01 < 0.01 

   
5 pixels 
range 

 
(2 to 6) 

M diff. -8 -1 2  5 pixels 
range 

 
(3 to 7) 

M diff. -17 -5 -2 
95% LOA  (-14, -2) (-9, 7) (-4, 8) 95% LOA (-28, -6) (-14, 9) (-8, 4) 
Tstat 19 1.9 4.7 Tstat 22 -6.8 -4.2 
p-value < 0.01 0.07 < 0.01 p-value < 0.01 < 0.01 < 0.01 

   
6 pixels 
range 

 
(1 to 6) 

M diff. -1 2 5  6 pixels 
range 

 
(2 to 7) 

M diff. -10 -3 1 
95% LOA (-5, 3) (-5, 9) (-1, 12) 95% LOA   (-16, -3) (-10, 5) (-5, 7) 
Tstat 4.5 3.7 11 Tstat 21 -4.7 2.1 
p-value < 0.01 < 0.01 < 0.01 p-value < 0.01 < 0.01 < 0.01 

           
7 pixels 
range 

 
(1 to 7) 

M diff. -2 2 5  7 pixels 
range 

 
(2 to 8) 

M diff. -11 -3 0 
95% LOA (-7, 2) (-6, 9) (-2, 11) 95% LOA (-20, -3) (-9, 4) (-6, 7) 
Tstat -7 2.9 10.7 Tstat -20 -5.4 1 
p-value < 0.01 < 0.01 < 0.01 p-value < 0.01 < 0.01 0.25 

   
7 pixels 
range 

 
(3 to 9) 

M diff. -21 6 3  8 pixels 
range 

 
(1 to 8) 

M diff. -3 -1 -4 
95% LOA (-33, -9) (-4, 16) (-3, 9) 95% LOA (-8, 2) (-8, 5) (-10, 1) 

Tstat -22 9 8 Tstat 14 -2.8 -11 
p-value < 0.01 < 0.01 < 0.01 p-value < 0.01 < 0.01 < 0.01 

   
8 pixels 
range 

 
(2 to 9) 

M diff. -11 3 0  8 pixels 
range 

 
(3 to 10)

M diff. -20 6 3 
95% LOA (-19, -4) (-5, 11) (-6, 6) 95% LOA (-32, -8) (-5, 16) (-2, 9) 

Tstat -21 5 -0.5 Tstat -23 7 9 
p-value < 0.01 < 0.01 0.63 p-value < 0.01 < 0.01 < 0.01 

           
9 pixels 
range 

 
(1 to 9) 

M diff. -8 -1 -4  9 pixels 
range 

 
(2 to 10)

M diff. -9 2 0 
95% LOA (-15, -1) (-8, 6) (-10, 1) 95% LOA (-19, 0) (-4, 9) (-7, 6) 

Tstat -15 -3 -11 Tstat -1 5 -1 
p-value < 0.01 0.01 < 0.01 p-value < 0.01 < 0.01 0.26 
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The numbers of detected cones varied with the circle detection parameters chosen. The 
radius range of 1 to 4 pixels resulted in the tightest agreement between manual and automated 
cone identification for images obtained with AO-SLO. For AO-FIO images the tightest 
agreement between manual and automated cone identification at 3° to 5° eccentricity was 
observed when the radius range is set at 2 to 4 pixels. At 7° to 9° eccentricity, the tightest 
agreement between these counting methods occurred when the pixel range is set at 2 to 9 
pixels although 2 to 8 and 2 to 10 pixels also showed good agreement. 

Our results indicate that cone identification using a cHT is dependent on the radius range 
selected. This is in keeping with the knowledge that cone diameter increases with 
eccentricity. Setting a narrow radius range may risk underestimation of cone numbers. On the 
other hand, if the radius range is too wide, clusters of closely packed cones may be identified 
as a single large circular structure as well as individual circular structures leading to 
overestimation of cone numbers (Fig. 7(c)). 

 

Fig. 7. AO-SLO (a) and AO-FIO (b,c) images and their segmentation results using the circle 
Hough transform. The green arrows indicate cones on the borders of images that sometimes 
are missed by the algorithm. Yellow arrow shows the features that are difficult to interpret and 
have been detected by the cHT. The green square presents over-identification of cone when the 
radius range is too wide. Pixel ranges are: 1-4, 2-4 and 1-9 respectively. 

3.3. Cone identification in AO-SLO images: comparison with other automated method 

The performance of optimized cHT for cone identification within AO-SLO images (55 µm × 
55 µm) was compared to manual cone counting, semi-automated counting by Garrioch et al. 
[15] and automated counting by Chiu et al. [14] using Bland-Altman approach. The results 
are presented in Fig. 8. While the Garrioch study defines the gold standard as the semi-
automated identification of cones where the automatic identification of cones was carefully 
reviewed and corrected, Chiu et al. used a fully automated method based on a graph theory 
and dynamic programming (GTDP) to detect cones. 

The Bland-Altman and scatter plots demonstrate high agreement between all the methods 
of counting. The mean difference between our optimized cHT method and manual counting is 
- 0.2449 cones, while that between our optimized cHT and Garrioch’s gold standard is 
−0.4898 cones. Similar results were achieved for comparisons of GTDP versus manual 
counting and Garrioch’s gold standard (0.7959 cones and 0.5510 cones respectively). 
Comparing cHT directly with GTDP a trend for slightly lower cone counts with our method 
was noted. This bias is likely due to variation in cone identification criteria at the edges of the 
image frames. 
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Fig. 8. Bland-Altman plots showing the agreements between cone counts obtained with manual 
and automated methods for AO-SLO images. Mean diff.- mean difference, LOA – limit of 
agreement, Tstat – t-statistic. 

3.4. Cone identification in AO-FIO images–comparison with other automated method 

The performances of cHT, AOdetect software and manual method for cone identification are 
presented in Fig. 9. The estimates of the mean difference between the automated counting 
methods and arbitrated manual counting tended to be lower for cHT as compared to AOdetect 
software. The mean differences between AOdetect method and arbitrated manual cone 
counting were −3 cones and −2 cones for the 3° to 5° and 7° to 9° eccentricities respectively. 
The underestimation of cone number by AOdetect was more pronounced in images with 
lower numbers of cones (30-50 per cropped region). In contrast, the mean differences 
between optimized cHT and arbitrated manual cone count were estimated to be −1 cone and 0 
cones for the 3-5 and 7-9 degrees respectively. There was a trend for underestimation of cone 
count in frames with higher number of cones (50-70 per cropped region). 
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Fig. 9. Bland-Altman plots showing the agreements between cone counts obtained with manual 
and automated methods for AO-FIO images. Black and red circles on Bland-Altman plots 
correspond to images obtained using AO-FIO from 3 to 5 and 7-9 degree ranges respectively. 
Mean diff.- mean difference, LOA – limit of agreement, Tstat – t-statistic. 

4. Conclusion 

In this paper, we describe an AO image analysis software that is designed to facilitate clinical 
use of AO image frames by 1, allowing co-registration and overlay of any AO image frames 
onto a wide field macular photograph and 2, creating a montage of cone images (with a field 
of up to 18° x 18°) using overlapping 4° x 4° field AO image frames. An overview of cone 
mosaic and density can thus be appreciated and compared across clinic visits and between 
eyes and patients. These features are not available on the current AOdetect software that 
comes with the rtx1 camera. Additionally, we describe the implementation of an image 
filtering procedure to enhance the visibility of cones to improve inter-observer agreement in 
the cone counts. Filtering does not degrade the high quality AO-SLO images, and enhances 
AO-FIO image quality, enabling more reliable manual cone counts. 

Using arbitrated manual counts as the gold standard, we optimized cHT parameters to 
detect cones in equivalent-sized AO-SLO and AO-FIO cropped images with varying cone 
densities and dimensions. Our optimized cHT method outperforms AOdetect in identification 
of cones in AO-FIO images and is equivalent to Chiu’s GDTP method for cone detection in 
AO-SLO images. 

Testing 840 cropped AO-SLO images of 55 µm x 55 µm size, Garrioch et al. reported an 
average coefficient of repeatability of 1,967 cones/mm2 in 4 equivalent regions of interest (at 
0.65° eccentricity) that had a mean density of 72,528 cones/mm2 based on their semi-
automated cone counting method. Garnier et al also reported on inter-grader agreement of 
cone counts from 60 cropped AO-FIO images (90 µm x 90 µm sampling windows). They 
showed a bias of 169 cones/mm2 and limits of agreement of −1,409 to + 1,747 cones/mm2. 
We reported that before and after filtering of AO images at 3°to5° eccentricity, coefficients of 
repeatability of manual counting by 3 observers were 10,038 and 4,329 respectively. The bias 
and limits of agreement between observers 1 and 2 were + 1,792 (−1,629 to + 5,213) before 
and + 315 (−2,046 to + 2,677) after filtering of AO images at 3° to 5° eccentricity. The results 
obtained using our cHT method on filtered images were comparable to those reported by 
Garrioch and Garnier et al. The poor inter-observer repeatability seen in our analysis are not 
unexpected given the varied familiarity of the observers with AO images. However, a 
reduction of over 80% in the average within-subject variance indicates the strong effect of 
filtering on image quality. We also show that inter-observer variation in cone counting does 
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not increase with increasing number of cones as imaged by the rtx1 camera with the 
exception of unfiltered images at 3° to 5°. Random error may explain the similarity in the 
absolute number of ambiguous cones in the cropped image between different regions of the 
retina, irrespective of whether there are 30 or 60 cones in the frame. The lack of association 
(e.g. increased error with increasing number of cones) suggests that the occurrence of a 
poorly visualized cone (i.e. those that are identified by one observer or algorithm but not the 
other) is unrelated to intrinsic features of the cone or to a fixed area of the image affected by 
poor quality. 

Optimized cHT parameters were determined using arbitrated cone counts from 60 AO-
SLO and 106 AO-FIO cropped AO images as the gold standard. For closely packed cones 
with a radius of around 2-3 pixels (AO-SLO images), we showed that manual cone counting 
is most closely matched by cHT algorithm if the radius setting is 1 to 4 pixels. Similarly, for 
moderately packed, small cones of radius around 2-3 pixels (AO-FIO images) at 3°to 5° 
eccentricity, a radius setting of 2 to 4 pixels gives the optimal cHT result compared to manual 
counting. For loosely packed, large cones of 4-5 pixels (AO-FIO images) at 7° to9° 
eccentricity, a radius setting of 2 to 9 pixels gives the optimal cHT result compared to manual 
counting. It is noteworthy that even by altering the lower bound of the radius range by 1 pixel 
(i.e. 1 to 9 or 3 to 9 pixels), the performance of cHT is severely compromised. Increasing or 
decreasing the upper boundary by 1 pixel (i.e. 2 to 8 or 2 to 10 pixels) had less effect on 
agreement with manual cone counts. We used the entire set of 166 cropped images to 
optimize these parameters rather than splitting the sample into training and validation sets. 
These radius settings will require further validation in an independent study to confirm their 
generalizability to counting cones in other regions of the macula or subjects with retinal 
diseases. We did not analyze AO-SLO images from regions where both rods and cones can be 
visualized. It may be possible to use cHT to count these structures separately through defining 
cone-specific and rod-specific radius ranges as these photoreceptors have very different 
diameters in the perifoveal region. 

The numbers of cones detected by our optimized cHT algorithm were similar to those 
obtained by the automated GDTP method described by Chiu et al. and semi-automated 
methods described by Garrioch et al. This excellent agreement held for densely packed cones 
of densities ranging from 60,000 to 100,000 cones/mm2 or 150 to 250 cones in each cropped 
50 µm x 50 µm AO-SLO image. We showed that AOdetect had moderate agreement with 
arbitrated manual counts with a significant bias due to underestimation of cone counts at 
lower cone densities (30 to 50 cones per 50 µm x 50 µm image or regions with equivalent 
density of 12,000-20,000 cones/mm2). The most likely cause for this is low image quality 
because agreement at this range is much improved when cropped images were filtered and 
counted manually. Interestingly, there was a trend for cHT to underestimate cone counts in 
cropped frames with larger numbers of cones (60-70 cones per 50 µm x 50 µm image or 
regions with equivalent densities of 24,000-28,000 cones/mm2). This bias may be due to the 
small number of cropped images with this range of cone density or to the failure of cHT to 
detect truncated cones at the edges of the frames. Given this potential limitation of cHT, 
further work is still required to enhance image quality and optimize the circle detection 
algorithm so that truncated cones at the edges of AO images are also identified. An advantage 
of the wider field of view in the AO-FIO image is the ability to acquire overlapping frames so 
that cone signals can be further enhanced by averaging regions of interest that can be 
visualized in 2-4 adjacent AO frames. Future studies are also required to automate the process 
of selecting the optimal radius range for regions of interest at various eccentricities from the 
fovea. 

There are several limitations in this study. First, we have optimized the cHT algorithm 
parameter without validation in an independent set of AO images. This can create over-fit and 
the performance of cHT algorithm may be overestimated. We made adjustments to the image 
filtering settings based on subjective impression of whether cones are more or less visible. 

#249692 Received 9 Sep 2015; revised 30 Oct 2015; accepted 30 Oct 2015; published 3 Nov 2015 
(C) 2015 OSA 1 Dec 2015 | Vol. 6, No. 12 | DOI:10.1364/BOE.6.004676 | BIOMEDICAL OPTICS EXPRESS 4692 



Second, we did not address the questions of (1) how much image adjustment is required for a 
clinically meaningful improvement in repeatability of cone counts and (2) whether the 
parameters can be varied semi-automatically depending on eccentricity (distance from fovea), 
average overall image brightness and other quantitative measures of image quality. 

The relative versatility of our software compared with AOdetect will also allow the 
establishment of a database of cone-related parameters in association with other measures of 
retinal structure and function as they can be readily co-registered using familiar retinal 
landmarks. We anticipate this software will be most useful in the measurement of changes in 
cone density over time and the study of the relationship between cone mosaic parameters, 
retinal sublayer thicknesses and retinal sensitivity on microperimetry. Future work is needed 
to investigate automation of radius settings in relation to eccentricity from the fovea and 
whether cHT may also be useful in quantifying the number of rods and cones separately on 
AO-SLO images as these structures have very different diameters in the perifoveal region. 
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